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Motivation

• Pain points in DIHARD
• Overlapped speech: detection, assignment, etc..
• Diverse environments: telephone, cafe, street, etc..

• Proposed main ideas
• Iterative (multiple stages) strategy
• Domain-dependent processing
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Improving generalization ability



System Overview
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• Three main diarization systems:
• Clustering based Diarization
• Iterative Speech Separation (ISS) based Diarization
• Iterative Target-speaker VAD (ITS-VAD) based Diarization

• Several auxiliary techniques:
• Audio Domain Classification
• Speech Enhancement
• Dover-lap for system fusion
• ASR-related attributes
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Audio Domain Classification

Resnet
(17-layer residual network)

• Training set : 
9/10 DIHARD III DEV set 
(truncated into 10-second segments)

• Testing set : 
another 1/10 DIHARD III DEV set 
(sentence-level voting)
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Input : 64-logmel
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Speech Enhancement

[1] L. Sun, J. Du, X. Zhang, T. Gao, X. Fang, and C.-H. Lee, “Progressive multi-target network based speech 
enhancement with snr-preselection for robust speaker diarization,” ICASSP, 2020. 6

PELPS1[1] :

• Progressively Enhanced LPS at target layer 1 

• 10dB increasing between 2 adjacent targets 

PELPS1 enhanced speech applied on :

• RESTAURANT domain 

• TRACK2 SAD



X-vector based diarization system

DER (%) on Track1 Development Set
Full Core

Miss FA SpkErr DER Miss FA SpkErr DER

10.92 0 4.98 15.9 10.94 0 5.18 16.12

[1] M. Diez, L. Burget, F. Landini, et al. “Optimizing Bayesian HMM based x-vector clustering for the second 
DIHARD speech diarization challenge,” ICASSP, 2020.

Clustering Based Diarization System

• Clustering based diarization system[1] can’t well handle overlapping speech
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SummarySpeech Separation Based Diarization

• Two parts: separation and detection
• Well handling overlapped regions in detection part

• Solving diarization via speech separation
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Problem of Blind Speech Separation



• Improving generalization ability by multi-stage process
• Improving performance via more accurate priors in iterative process
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Iterative Speech Separation Based Diarization



DER (%)
System                              CTS FULL CORE

Clustering based diarization 16.22 15.78 15.94

ISS based diarization 8.31 13.11 15.11

Fine-tuned model: 
• Simulate 5000 mixed audios (about 2-3 hours) for each session in CTS;  

[1]Y. Luo and N. Mesgarani, “Conv-tasnet: Surpassing ideal time–frequency magnitude masking for speech 
separation.” IEEE/ACM transactions on audio, speech, and language processing, 2019.
[2]https://github.com/asteroid-team/asteroid

Pre-trained model:
• Use the Librispeech dataset to simulate 250 hours training data;
• Train a fully convolutional time-domain audio separation network (Conv-TasNet)[1,2] model; 

Experimental setup
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Iterative Speech Separation Based Diarization



Target-Speaker Voice Activity Detection

• TS-VAD[1]
• Handling overlapping speech
• Obtaining great performance on CHiME-6

• TS-VAD problems
• Only handling session of fixed speaker number
• Poor generalization ability to diverse environments 

[1]Ivan Medennikov, et al. “Target-Speaker Voice Activity Detection: a Novel Approach for Multi-Speaker 
Diarization in a Dinner Party Scenario”, Interspeech, 2020. 12



TS-VAD for Variable Number of Speakers

• Keeping the original TS-VAD structure and taking output speaker ! = 8
• When session speaker number $!! = ! in training and testing
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Iterative TS-VAD for Variable Number of Speakers

• Iterative TS-VAD is proposed to solve mismatch between training and testing set
• Fine-tuning TS-VAD pre-trained model for each session
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Experiments on Track1
Training data
• i-vector extractor

• Voxceleb 1 and 2
• TS-VAD pre-trained model (Total: 2500 hours)

• Switchboard-2, AMI Meeting Corpus, Voxconverse DEV
• Simulated multiple speaker dialogues with LibriSpeech

• Iterative TS-VAD finetuned model (4 hours for each session)
• Simulated multiple speaker dialogues with non-overlap speaker segments
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DOMAIN MAPTASK BROADC. COURT. SOC. LAB CTS CLINICAL SOC. FIELD MEETING WEBVIDEO RESTAURANT

Clustering based diarization 5.02 2.60 2.95 7.97 16.22 10.97 11.87 26.41 35.02 38.14

TS-VAD 6.71 2.94 3.15 8.81 10.21 16.48 13.79 24.72 36.73 47.71

Iterative TS-VAD 2.27 2.37 2.46 5.17 7.76 9.83 10.74 23.05 35.55 39.77

• TS-VAD 
• Performing better on well matched domains

• Iterative TS-VAD (ITS-VAD) 
• Greatly improving generalization abilities on most domains
• Still cannot handle complex environments



Post-processing
• Diarization Systems

• Clustering based diarization

• ISS based diarization

• Iterative TS-VAD based diarization with different priors

• System Fusion

• Dover-lap [1] of above systems

• Domain Selection

• Selecting the best system for each domain according to DEV sets.

• ASR-related attributes

• laughter detection

[1] D. Raj, L. P. Garcia-Perera, Z. Huang, et al. “DOVER-Lap: A Method for Combining Overlap-aware 

Diarization Outputs.” arXiv preprint arXiv:2011.01997, 2020.

Laughter segment

Speaker1: Speaker2:  Speaker3:  

Laughter segment

Laughter detection
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Track1 Results

17

• We ranked 1st on both FULL and CORE sets of Track1. 

DER (%)



• Network structures

• DNN (195-256-128-2)

• CNN-LSTM-DNN (2 CNN layers, 2 LSTM layers, 2 DNN layers)

• TDNN[1,2]

• Enhanced speech for fine-tuning and testing

• Fusion: voting from the three systems

[1] V. Peddinti, D. Povey, and S. Khudanpur, “A time delay neural network architecture for efficient modeling 
of long temporal contexts,” ISCA, 2015.
[2] P. Ghahremani, V. Manohar, D. Povey, S. Khudanpur, “Acoustic Modelling from the Signal Domain Using 
CNNs,” Interspeech, 2016.

Track2 SAD
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Track2 Results
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• We ranked 1st on both FULL and CORE sets of Track2. 

DER (%)
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Take-home Messages

• Iterative multi-stage processing is important

• Speaker information can be updated stage-by-stage

• Speech separation is a promising direction:

• Currently useful for simple telephone data

• The generalization ability needs to be improved

• Domain dependent methods can achieve better results

• Auxiliary techniques should be used flexibly (e.g. Speech enhancement)
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